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CHARACTERIZATION OF Lr-SOLUTIONS FOR THE TWO-SCALE
DILATION EQUATIONS*

KA-SING LAUT AnD JIANRONG WANGT

Abstract. We give a characterization of the existence of compactly supported LP-solutions,
1 £ p < oo, for the two-scale dilation equations. For the :L2-ca.se, the condition reduces to the
determination of the spectral radius of a certain matrix in terms of the coefficients, which can be
calculated through a finite step algorithm. For the other cases, we implement the characterization by
the four-coefficient dilation equation and obtain some simple sufficient conditions for the existerice of
the solutions. The results are compared with known ones. :
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1. Introduction. A two-scale dilation equation is a functional equation of the
form ’ ' .

N
(1.1) f(z) = enf(oz — Bn),

n=0 .

where f: R— R (or C), a > 1, o < B < e < B are real constants, and c,
are real (or complex) constants. The equation is called a lattice two-scale dilation -
equation if

. N
2 f@) =" caf(kz —n)

n=0

for an integer k > 2. A special case of the functional equation (k = 3, N = 4,
and ¢, = 1, 2/3, 1/3, 1/3, 1) was first studied by de Rham [dR] as an example of
a continuous nowhere differentiable function. Recently this equation has attracted
a lot of attention, especially for the lattice case with k¥ = 2. In wavelet theory, the
study of multiresolution and the search of various orthogonal, compactly supported
wavelets has lead to the investigation of the existence, uniqueness, and smoothness
of such continuous integrable solutions (see the work of Cohen, Colella, Daubechies,
Heil, Lagarias, Lawton, Mallat and Meyer; see the survey paper [H]). The equation
also plays an important role in the “subdivision schemes” and “interpolation schemes” .
of constructing continuous spline curves, surfaces, and fractal objects (see the work
of Cavaretta, Dahmen, Deslauriers, Dubuc, Dye, Gregory, Levin, Michelli, Prautzsch:
see [DL1] and [DL2] for an historical development and references).

The general two-scale (in fact multiscale) dilation equation (1.1) arises in the
consideration of self-similar measures (Hutchinson [Hu]), and the singularity of the
measures induced by the infinite Bernoulli convolutions. The latter has been studied
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for a long time and the question is still unsettled (see the work of Erdds, Garcia,
Jessen, Salem, Wintner; see [L1] and [L2] for some recent developments and remarks).
In another direction, Strichartz [JRS], [Str] studied the asymptotic behavior of the
Fourier transformation of such distributions, and made many interesting observations
on the averages with respect to some fractional powers.

There are two major approaches to the equation: the Fourier method (the fre-
quency domain approach) and the iteration method (the time-domain approach). The
Fourier transformation converts the functional equation to the form

f&) = A]] p(a—99),
j=0

where p(¢) = 1 22’,__0 cneibn&, Using this, Daubechies and Lagarias [DL1] proved that
for A =a"1) cp, ’

(i) if |A| < 1 or A = —1, then (1.1) has no integrable solution;

(ii) if A = 1 then it has at most one nonzero integrable solution;

(iii) if |A| > 1 and if an integrable solution f exists, then A = o™ for some
nonnegative integer m. The dilation equation obtained by replacing the coefficients
{cn} with {@~™c,} has a nonzero integrable solution g, and for suitable choice of
normalization,

| dm ,
| E;;——"—Lg(a:) = f(z) a.e.

For an integrable solution, the above result essentially reduces the coefficients of

the equation to the special case '
Z cn = Q.

By using the Fourier transform of f and the Paley—Wiener theorem, it was also proved
in [DL1] that f has compact support in [0,B8N/(a — 1)]. The Fourier method,
however, does not give sharp criteria for the existence of Ll-solutions in terms of the
coefficients {cn}. Some partial results are given in [La] and [M].

The iteration method is restricted to the lattice case. It applies particularly well
in the case of compactly supported solutions. The basic idea is to identify a given
function f supported by [0, V] with the vector-valued function

f(z) = [f(2), f(z +1),..., f(z+ (N -1))]!, z€]0,1],

and to use the right side of the dilation equation to construct two N x N matrices Ty
and T} (see §2 for details). A constant vector v is used as the initial condition, followed
by iteration with the matrices To and T1 (the cascade algorithm). The limit, if the
sequence converges, will be the solution of the dilation equation. Such an approach was
used by Daubechies and Lagarias [DL2], and independently by Michelli and Prautzsch
[MP]. It was also used by Berger and Wang [BW1], and Collela and Heil [CH1] and
[CH2].

For two given matrices Ap and A;, Rota and Strang [RS] and Strang [S] defined
the joint spectral radius of Ag, Ay by '

p(Ag, A1) = limsup Am (Ao, A1),

m—0o0

where .
Am (Ao, A1) = max ||A||=
: |J|=m
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with J = (j1,...,41), Ay = Aj, ---Aj, 5i = 0 or 1. A useful sufficient condition for
the existence of solutions is given in [DL2] and [BW1)].
THEOREM 1.1. Fork=2, Y can =Y cont1 = 1, let

H={u=[u1,...,uN]t: Zu,;———O}.

If 5(Tolm, Ti|H) < 1, then the equation has a nonzero continuous integrable solution.
Colella and He11 [CH1} and [CH2] also showed that the condition is “essentially”
necessary. More recently Wang (W] introduced the notion of mean spectml radius:

L
m

) 1
ﬁ(To,T1)=1171nnjllop'2- lﬁ: 1Tl

He proved, among other interesting results, that if 3" con = 3 czn+1 = 1 and p(Ao, Ap)
< 1, where .

T, ~ [bl Xi}, i=0,1,
then a nonzero integrable solution exists.

This characterization in terms of the joint spectral radius, although elegant, is
difficult to evaluate in practice. By using a geometric convergence consideration and
a different iteration argument, Pan [P] gives a simple sufficient condition for the exis-
tence of compactly supported LP-solutions of the functional equation (1.2) with four
coefficients.

In this paper we will continue to study the existence of the compactly supported
Lr-solutions of

N
(1.3) | f&) =) caf(2z—n),

n=0

using the cascade iteration algorithm with the matrices Tp and Ti. The regularity of
such solutions will be dealt with in a forthcoming paper. Note that in the previous
literature, one always starts with an initial condition that is, in a certain sense, quite
arbitrary (for example, a spline function or xjp,1;j). Our fundamental observation is
the following proposition.

PROPOSITION 1.2. Suppose 1 <p < oo and ¥, cn, = 2. Let f be a compactly
supported LP-solution of (1.3) and let

t
ol

Then v is an eigenvector of (Tp + T1) corresponding to the eigenvalue 2.

It follows that we can start with the iteration algorithm on the 2-eigenvector of
To + T4, and the convergence condition will be imposed only on the subspace involved
with such eigenvector. This allows us to obtain sharper results. The basic theorem is
as follows.

THEOREM 1.3.  Suppose 1 < p < oco. Then equation (1.3) has a nonzero com-
pactly supported LP-solution if and only if there exists a 2- ezgen'uector v.of (To + Th)
such that

—l Y NTH(To - Do|lP — 0 as ! — co.
|J|=t
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For computational purposes we let H(?) be the subspace in R generated by the
T59’s for all J, where ¥ = (Tp — I)v, and let {v1,...,vx} be a basis; then the above
condition is equivalent to the existence of an integer l such that

(1.4) Z I TuilP < 1

|J|__l

forall v;,i=1,...,k.

The above results, as well as some corollaries and remarks, are proved in §2. A
slight improvement of Theorem 1.3 under the condition that the coefficients satisfy
the “m-sum rules” (see (2.7)) is also considered.
| In §3, we consider the equation for the three-coefficient (N = 2) and the four-
coefficient (N = 3) cases. For the first case we obtain a complete characterization
of the compactly supported LP-solutions. The second case is less trivial; it contains
the well-known Daubechies wavelet D4 [D], and has been studied in detail in [H] and
[P]. By using the basic theorem, we are able to derive some 31mp1e criteria for such
solutions to exist.

In §4 we give an improvement of Theorem 1.3 for the L2-case. In this case, the
left-hand side of (1.4) can be calculated and leads to an explicit expression of an
N x N matrix W (Lemma 4.1, Proposition 4.3). Under a stronger assumption on the
coefficients

(1.5) | - Zc'm = 262n+1 =1,

we show that the matrix W has an eigenvalue 2; (1.4), and hence the existence of the
compactly supported L2-solution, is essentially equivalent to the fact that all other
eigenvalues of W are less than 2 (Theorem 4.4 and Proposition 4.6). For the four-
- coeflicient case we obtain a complete characterization of the existence of the compactly
supported L2-solutions (Theorem 4.8).

There are different criteria for the existence of L2-solutions; e.g., see [E], [Herl],
[Her2], and [V]. Their approach is via a Fourier method which is quite different from
ours (see. Remark 9 in §4).

In [CH1], Collela and Heil used (co, c3) as free parameters for the four-coefficient
case satisfying co + c2 = ¢; + ¢3 = 1, and plotted different domains in R2 that admit
or do not admit solutions. We conclude our study with an appendix for displaying
our result and some other well-known results with the same kind of plots.

2. The basic theorems. Throughout this paper we will consider the compactly
supported LP-solutions, 1 < p < 0o, of the functional equation

N
(2.1) .. f@) =3 enf(2z —n).

n=0

The general lattice case can be handled similarly (see (2.5)). For convenience we let
cn =0ifn ¢ {0,...,N}. Our basic assumption on the coefficients is Y ¢, =.2. For
some cases we will also assume that > con = ) cont1 = 1. We will further restrict
the c’s and the function f to be real valued, though there is no difficulty in extending
our method to the complex case.

It is known that if an Ll-solution exists, then it is necessarily unique, and is
supported by [0, N] [DL1]. This is not true if 1 < p < oo, since the Hilbert transfor-
mation of such solution is again an LP-solution [H]. We will use L2-solution to denote
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the compactly supported LP-solution. An L:-solution must be integrable, and hence
supported by [0, N].

. Formally, the solution f is obtained by takmg the limit of S» (g) for a suitable
function g on R, where

S(g)(z) = Z cng(2z — n).
. ‘ n=0 -
In some previous papers [BW], [CH1], [CH2], [DL2], [MP], [W], it is found that the
analysis is a lot more convenient if we convert the involved functions into vector forms
and the operator S into a matrix operator. For this we let

'co 0 O 0 1
c2 €1 Cp 0
Tp = {c2i—j—1]1_<_i,jSN =}C C3 C2 ... 0 ,
- 0 0 0 ... env-1l
fec1 co O 0
c3 C2 € 0
Th = [e2i—jligijen = |C8 €4 €3 0
L 0 ] 0 0 «.. CN

For any g defined on R vanishing outside [0, N], we decompose g into N pieces and _
form a vector function as follows: let gi(z) = g(z + i)xp,1),%4 = 0,1,...N — 1, and
define a vector function ®#(g) =g: R — RN by ' :

_ z), 1(:1,‘),..., ..1(:17)]t ifze [0, 1),
g(z) = {([)go.( h (s ifz ¢0,1).

Here we use vt to denote the transpose of a vector v. Let ||-|| be any fixed norm on RN -

and define, as usual, ||g|| = ||g||r = (f01 ||lg(z)l|rdz)1/?, so g € LP[0, N] if and only if

g € L»([0,1],RN). Note that if we take the lP-norm on R¥, then ||g||r» = ||g]|L».
Let T be an operator defined on the vector-valued functions g by

(Tg)(z) = To - &(¢5"(2)) + T - 647 (=),
where ¢p(z) = %m, ¢1(z) = 3z + 3. Equivalently, T is given by

Ty - g(22) if z€[0,3),
(Tg)(z) = {TS . 2(293 ~1) if: € [%,i),

and (Tg)(z) = 0if z ¢ [0, 1). If we iterate the operator T on g repeatedly and obtain
a formal limit £, then f will satisfy

(2.2) f(z) =To - f(dg ' (z)) + T1 - £(67 ().
PROPOSITION 2.1. Let f be supported by [0, N|, and let ®(f) = f be defined as

above; then
®S(f) = TB(f).
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Moreover, f is an LE-solution of (2.1) if and only if £ € L?([0,1],RN) and f = Tf,
i.e., f satisfies equation (2.2).

Proof: The proof of the commutat1v1ty of the operators only involves a direct
computation of z in [i,7 + 2] and [i + 3 1 i+ 1]. The second part is a consequence of
the first part, making use of the fact that if the solution has compact support then it
must be contained in [0, N]. a

We begin with some simple considerations of the eigenproperties of Tp and T3.
Unless otherwise specified, eigenvector will mean right eigenvector. By a A-eigenvector
of a matrix M, we will mean an eigenvector of M corresponding to the eigenvalue \.
The following proposition is known.

. PROPOSITION 2.2. If Y ¢ = 2, then 2 is an eigenvalue of (To + Th) with left
eigenvector [1,...,1].
Furthermore ifY eam=Y, czn+1 =1, then 1 is an elgenvalue of Tp and 17 with

[1,...,1] as a left eigenvector.
Proof. We need only observe that in the matrix (Tp + 11), each column has sum
equal to 2. The proof of the second statement is similar. 0

It follows that the right 2-eigenvector of (Tp+T1) exists also; it will play a central
role in the existence of the solution of (2.1). Let fa be the average of f over an interval

A, ie.,
fa= 1 [
A= T3 )
A} Ja
where |A| is the length of A.

PROPOSITION 2.3. Let f be an LE-solution of (2.1); let v = [fio, 1], o fin-1,m)]t
be the vector defined by the average of f on the N subintervals as indicated. Then v
- 15 a 2-eigenvector of (To + T1).
Proof. Since f =TT, i.e.,

[Ty - £(2z) if z € [0, 1),
fz) = {TO f(2:—1) ifie[z,ﬁ

when we integrate the expression over [0, 1] and [2, 1] separately, we have

f[O i f['%v]-]

p— TO’Ua‘ I =Tiv.

’2]

fiv-1,nv-1 fin-1.3)

On the other hand, note that on each interval [i,i + 1], the average satisfies
f[i,i+%] + f[i+%,i+1] = 2fps,541)5

hence we conclude that (Tp + T1)v = 2v. ]

We will show, under suitable conditions, that the 2-eigenvector of (Tp + T) ac-
tually defines a step function that generates the solution of (2.1). This is done by
iterating with the operator T, and is itself the average vector of the solution. For this
purpose, we need to introduce some notation for the indices: For any k > 1, let

= (J1,y---+Jk), wherej;=0o0rl, i=1,2,...,k,

and set J = @ if k = 0 for convenience; we will use |J| to denote the 1ength of J and
let ,
A={J: =k k=012,..}




1024 KA-SING LAU AND JIANRONG WANG"

denote the class of indices. For J,J' € A, welet (J,J') = (j1,..., 0k, 531+ -1 Jps)- Let
I be the interval [0, 1); I; will denote the dyadic interval ¢;, o ¢;, - - - 0 ¢, ([0, 1)). For
example, Io = [0, 3), 1 = [$,1), and Iy = I(;, . ;) = la,b), where
J1, J2 Jk 1
a=T+ S+ 42, b= a+ 2.
It follows that I(j0y U I(71y = Iy and Iy 4.y C I; for any J,J’ € A. The matrix T
represents the product T3, ...Tj, and Ty is the identity matrix.
LEMMA 2.4. Let fo(z) = v for z € [0, 1) and fr41 = Ty, £k = 0,1,...; then
fi(z) = Tyv for each x € I;.
Moreover, if f is an L% -solution of (2.1) and v is the average vector of f defined
in Proposition 2.3, then .

fr(z) = Tyv = [f1,, fis41)s - - - » Fas+N-1) )t

where (I +7) is the interval {z+j: z € I;}. Also, fy — f = &(f) in LP([0,1],RN). |
Proof. We will use induction to show that fx(z) = Tyv for z € I; with |J| = k.
Suppose that fx(z) = Tyv for z € I;. Let = € Ip,5) = ¢o(Is); then ¢t (x) =2z € I,
and
fk+1(:1:) = T(fk(.'z:)) = To . fk (2:1;) = ToTJ’U = T((),J)'U.

Slmllarly, ifzxe I(I,J)a then fk+1(.’1)) = T(l,J)'U.
Let f = ®(f); then f = Tf and f(z) = Tyf(¢7'(z)) for z € I;. Integrating this
over the interval I;, we obtain ‘

[f1s+ o0 fryen-a]t = Tyv.
The facf that f, — f in Lr(]0, 1],R1‘_’ ) follows by a proposition in
R,p.129]. O -

LEMMA 2.5. Let v be a 2-eigenvector of (To+T1), and let £}, be defined as above;
then for each k,

(2.3) / fr(z)dz = v.
[0,1]
Proof. Equation (2.3) follows from the following induction argument:

/ fr+1(x)dz =/ To - £, (22)dx +/ Ty - (22 — 1)dz
[0’1] 1 1

0;'2‘)] 2

= l(TO/ fk(m)dx+T1/ fk(:c)d:v>
2 [0.1] [0,1]

1
= 5(To + Tl)/ fi(z)dx
[0,1]
= %(To—i-Tl)'u:'v. ]

For any 2-eigenvector v of (Tp 4+ T1), we have

(To — I)v = —(T1 —_ I)’U.
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Let & = (To — I)v and H(¥) be the subspace in RV spanned by
{Tso:J € A}

THEOREM 2.6. For 1 < p < oo, the following are equivalent: (i) equation (2.1)
has a nonzero LE-solution; (ii) there ezists a 2-eigenvector v of (To + T1) satisfying

lim = || Ts9||P = 0;
l—00 .
W=l

(iii) there exists a 2-eigenvector v of (To + T1) such that there exists an integer I > 1
such that '

| 1 N .
(2.4) 5 O ITullp <1 forallue H@), |lull<1.
|71=t

Proof. Let fo = v and fp41 = Tf,. By Lemma 2.4, for-z € Iy and |J| = n,
fo(z) = Tyv. Let gn = o1 — £n; then fry1 = fo + go + - - - + gn, where

(z) = Tigoyv—Tyv =Tsv if z € I,
Bl = Ty —Tov = =Tso iz € Iy,

and"

-1 ~
llgnlle = o= D 175,
2

|J|=n

Since (i) implies that ||gx|| converges to zero, (ii) follows immediately.
To prove that (ii) implies (iii), we note that H(®) is finite dimensional and has a
finite basis of T'y+9’s. Let u = T;»0 with |J'| = k; then

1 . 1 - 1 -
= S il = g 3 Tl S 2y Y Tl — 0
+ |Jl=n |J|=n |Jl=n+k

as n — oo, and the convergence is uniform for all ||u]] < 1. Hence (2.4) follows by
taking ! = n for n sufficiently large. ,

.Now assume (iii) holds. Since H(®) is finite dimensional, there is a constant
0 < ¢ < 1 such that for any u € H(9),

1
= 3 ITsull? < cljulp.
|J )=l

For any IJ’IJ =n, let u = Ty0 € H(?); then

1 - ~
o Z | Ty Ty o||P < c||TroflP.
|J1=t

Summing over all |J/| = n, we have

1 . 1 . ¢ < o B
Y= > ITydlle = ST > Ty T dllP < 57 > ITrillr.

Ji=l4n W=l1J|=n |J|=n
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It follows from the expression of ||gx|| given above that

lgnsillP < cllgalle.

For each fixed n, {||gn+k,||},;“;1 is dominated by a geometric series, hence fror1 =
fo +go + -+ + gn converges in LP. The limit f is nonzero by Lemma 2.5, and so by
Proposition 2.1, (i) follows. O )

Remark 1. If . )

2l > ITla@lP <1,

|J|=t »
then (2.4) is satisfied. Hence, if the joint spectral radius [BW1], [DL1] or the mean
spectral radius [W] of {To|n(s), Ti|m(s)} is less than 1, then a nonzero L!-solution
exists.

Remark 2. If condition (2.4) is satisfied for one particular norm on R¥, then it
will be satisfied for all the (equivalent) norms (the integer ! will depend on the choice
of norms). This follows directly from Theorem 2.6 (ii).

Also, condition (2.4) can be replaced by the following slightly simpler condition:

1
5 > 1 Trullp < 1,
=

where {u1,...,ux} is a basis of H(%). To see this, we define a norm on R™ such that
its restriction on H(?) is the [P-norm given by

k -k
Nul||p = Z |eilP,  where u = Zaiui.
i=1

i=]

Let u = Ef:i a;u; € H(9); then

ko | k
1 1 |
g 2 Tl < 5 37 S laslelliTouillle < S lasle = ullle,

W=t . [J|=t i=1 i=1 :

which implies (2.4).

For computational purposes it would be interesting to know the optimal choice
of a bound of the integer [ in condition (2.4), in particular, when the norm on RN is
the /P-norm. , .

Remark 3. In [DL1, Thm. 3.1 and Rem. 1], it is proved that if Y.¢n = 2 and
a nonzero compactly supported tempered distributional solution S exists, then the
Fourier transform of f must have the form '

£(&) = AT mo(2-*e),
k=1

where mg(§) = %Zg;l cne™s. Moreover, if f is integrable, then A4 = [ f(z)dz. Tt
follows that f is unique up to a multiplicative constant. By Proposition 2.3, the above
vequals [fio 1), - - -, fiv—1,n)]t, so that the 2-eigenvector satisfying (2.4) is unique. Also,

it follows from the expression of A that

N

Su= [ f@yz o,
n=0
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hence v ¢ H = {u: >N oui =0} .

We are not able to prove these two facts without using the Fourier transform.
Nevertheless, we have the following result, whose negation is useful in proving the
nonexistence of solutions.

COROLLARY 2.7. Under the same hypotheses of Theorem 2.6, assume that the
solution f ezists; then v ¢ H(?), and the dimension of H(9) is < N — 1.

Proof. By Theorem 2.6 (ii), |

1

on Z ||Tyullp — 0 for any u € H(D).

|Ji=n

It follows that if v € H(¥), then

1 ' 1
ollp = 5= I(To + T)rolle < 5 3 [ITyvle — 0
, |J|=n ’

as n — oo . This contradicts v # 0. 0

Remark 4. In the construction of the solution f, if we start the iteration from
a vector other than the 2-eigenvector v, then the process may not converge, or may
converge to the zero function. For example, consider

f(z) = f(2z) + f(2z - 2).

In this case co = 1,¢1 = 0,c2 = 1, and

10 o 1
T""[1 0}’ Tl“[o 1]'

The 2-eigenvector of (Tp + T1) is v = [1,1]¢t and H(?) = 0, hence condition (2.4) is-
satisfied. The (normalized) solution f is the characteristic function of the interval
[0,2]. However, if we start with the vector [1,0]¢, then the iteration with T will not
converge. , :

Nevertheless, we are still able to choose a large class of vectors that can serve as
initial values. ;

COROLLARY 2.8. Suppose >, cn = 2. Let w = [wy,w2,...,wy]t be a vector in
RN and H'(w) be the subspace spanned by

{T)T; —Dw: JeA, i=01}.

Suppose w ¢ H'(w) or Y w; # 0, and suppose

1
o S liTsulle <1 forallu€ H'(w), |l <1
|i=t

then (2.1) has a nonzero LE-solution. _ :

Proof.  As in the first part of the proof of Theorem 2.6, we define fo(z) = w for
all z € [0,1)] and f41 = Tfk; then fi will converge in Lr([0,1],RVN) and the limiting
function f will satisfy equation (2.2).
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We still need to show that f # 0. If w ¢ H (w), then from the proof of Theorem
2.6 we have

n
f=lim fi =fo+ lim zogi
]=

with fo(z) ¢ H'(w) and gn(z) € H'(w), so f(z) ¢ H'(w) and f is nonzero.
To prove the second case, we assume that >_w; # 0; then by Proposition 2.2,
e=|1,...,1] is a left 2-eigenvector of (Tp + T3), so

e / fr+1(z)dz
[0,1]

=e- To-fk(2m)dm+e-/ Ty - £ (22 — 1)dz
[0,3] (3.1]

= 1e- (To / fr(z)dz + Ty / fk(m)d:c)
2 [0,1] [0,1]

= le- (To + T1)/ fe(z)dz =e- / fk(x)dm
2 [0,1] [0,1] .

Repeating this argument, we have

e- fk+1(m)da:=---=e-f0(m)=e-w=Zw¢#0.
[0,1]

This implies that f # 0, and the proof is complete. 0 ' |
[0,1]

Remark 5. Let D} be the set of (co,...,cn) for which (2.4) holds; then
(i) DY C D), and ‘

(ii) DY € U D%, for any 1.

Indeed, if (2.4) holds for some I, then

517 S ITsullp < llulle forall u e H(B).
7=

Since Tyu € H(?) if u € H(?), we have

1 11 1
sm 2 TP < g 3 3 T Tomlle <o S Tl < Jjulle.

|J|=2l [T/ |=1 || =l |7 =t

To show (ii), let ¢ be a number 0 < ¢ < 1 such that

517 > Tsulle < cllullp for all we H(d)
|Jl=t

holds. If |J| = 2%, we write J = (J1,..., Jm, J'), where |J;| = [ and |J!| < l; then

| " |
Q%T > Tl < '2|IT| (%) Do ZHTJI'“TJmTJ_'uH”

|J|=2k Nh=l  Jp=l J'

' 1
<o D Tl
J’I
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which is less than 1 for ||u|| < 1 if k (hence m) is large enough.

COROLLARY 2.9. Equation (2.1) has a nonzero L2-solution if and only if (co, . . -, CN)
euR,DE,. :

Remark 6. One can also consider the functional equation
(2.5) f(z) =) caf(kz — Bn)

for some intéger k > 1 and constant 3 # 0. Note that the LE-solution will be supportéd
by [0, BN/(k—1)] [DL1]. Theorem 2.6 still holds with minor medifications of the proof.
The matrices for the cascade algorithm will be ‘

Tm = [cki.;.m_j], 0<i,j<N -1,

form=0,...,k— 1. If we define ¢ (z) = ¥ + Tl-cg, m=0,...,k—1, the vector form
of equation (2.5) becomes ' '

k—1
f(z) =Y Tmf(¢m (z)),

m=0

and the proof follows as above. :

THEOREM 2.10. Suppose Ef:o cn =k and 1 < p < oo. Then equation (2.5) has
a nonzero LE-solution if and only if there exists a k-eigenvector v of 3, Tm satisfying
the following: there exists an integer I > 1 such that

1
g > T Tl <1
3i=0,....,k—1

for all vectors u, with ||u|| < 1, in the smallest subspace containing (Tm — I)v and
which is invariant under Ty, ,m=0,...,k—1.

To conclude this section we consider some special cases of Theorem 2.6. First, we
assume that Y ¢2n =) cont+1 = 1. This is a necessary condition for the solution to
be the scaling function of a wavelet that defines a multiresolution (see [DL1], [CH2]).
By Proposition 2.2, we know that e = [1,...,1] is a common left 1-eigenvector of the
two matrices Tp and T}. Since f,.(x) = Tyv if z € Iy = ¢4([0,1)),

e-fn(x)=e-TJ'u=e-v=Zvi.

Hence e - f() equals the constant 3~ v; for almost all z € [0, 1]; that is,

N-1
Z flz+n)= }:vi for almost all z € [0, 1],

n=0

and N N1
/0 f(x)dw=1;)/o f(:z:-{—n)d:z::z:vi,

which is not zero as we mentioned in Remark 3.
Let H be the hyperplane of RV defined by

H= {[Uo,...,UN—-l]t AN =0};
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then H is invariant under Ty and Ty. For any vector v € RN, we always have
(To — I)v, (Ty — I)v € H (since the sum of the coordinates of (To — I'v equals
e-(To — I)v =0). Hence H(¥) C H. '

COROLLARY 2.11.  Suppose that 3" con = Y cont1 = 1. If there exists an
integer | > 1 such that

! |
(2.6) of D ITsullp <1 forallue H, |[u]] <1,
|Jl=l

then equation (2.1) has nonzero LE-solutions.
~ Assuming ) ¢; = 2, the condition 3~ can = 3" cany1 = 1 is equivalent to d(=1)re,
= 0. More generally, we can consider the m-sum rules; that is,

N
2.7) > (~1)mnicy =0 forj=0,1,...,m.

n=0

The m-sum rule is used to ensure higher order of regularity (see [DL2]). It is known
that there is a matrix B such that ‘

(1 0 .- 0 0 --- 0 T
x 1/2 ' :
. : 0 0 0
BTOB— = * e * 1/2m 0 e 0 3
S %k * * %
EE" * * * |
1 O 0 0 0 7
* 1/2 :
' v : 0 0 0
BNB='= 14 ... « 1/2m ¢ 0
%k *k ES E *
_* *‘. i K “ee % ]

The matrix B can be orthonormalized by the Gram—Schmidt process; the first
row of B is the vector [1/v/N,...,1/v/N] and the first (m + 1) rows of B are linear
combinations of vectors

[14,24,...,N4], j=0,1,...,m.

Let H' = {[0,u1,...,un-1]t}, Hm C H’ be the subspace of vectors whose first (m +1)
components are zero. Then H = B-1H’, and Hn, := B~1Hj}, is actually the following
subspace: ’

 N-1
CHp = {[uo,...,u,\,—_'l}t: Z'njun =0,j=0,1,...,m}

n=0
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(here 00 = 1).
COROLLARY 2.12.  Suppose 3 cn = 2 and the m-sum rules hold. If there exists
an integer | > 1 such that ‘

1
o Z WTyullp <1 forallu € Hm, |ju||l<1,
|J]|=l

then equation (2.1) has a nonzero LE-solution.
Proof. For j =1,...,m, let v; = [0,...,0,1,0,...,0]t be the vectors whose jth
component is 1. Let v; = B~1v}; then v; € H', v; € H, and

. .
BTyv; = BTyB-1-Bvj = BT()B-LU;- = —2-3—’03 + w}
for some w; € Hm, so Tov; = (1/29)v; + wo,; for some wo,j; € Hm. Similarly, Tiv; =
(1/29)vj + wy,; for some wy,; € Hm.
Note that {v1,...,vm} and Hmp span H. By Corollary 2.11 and Remark 2, we
need only show that for each j = 1,...,m there exists k such that

1
Sp 1= ok Z HTyv;]lP < 1.
|J]=k

" Let ¢, = 2P—1; then for the usual I? norm we have |ju + v||P < cp(|ulip + ljvllP)
for any vectors u and v. Forany j =1,...,mand n=1 /4cp, by assumption there is
an integer [ such that

1
2 Z | Tyw; ;||p <n fori=0,1.
|71=1
Then
! 1 P 1 »
=g | 2 T gt )| + 2 [T (gwtew

|J|=n-1 |Jl=n-1

1 |2c
<o |52 X ITwlp+e Y, |Towosle+ep 3, [Trwnsli

2 2w |J|=n-1 |Jj=n—1 |Ji=n—-1
o 1 1
< T +nep < 5 Sn—1 + 1
Hence _
st < s (o e b 1) S E o =1
nH S gntt T \gn-1 T 2n-2 4=27 2"
for sufficiently large n. O

3. Special cases: N < 3. The simplest nontrivial 2-dilation equation occurs
when N =2, i.e.,

(3.1) F(z) = cof (2z) + c1 f(2¢ — 1) + ca (22 — 2),

where ¢g + ¢1 + ¢c2 = 2.
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THEOREM 3.1.  For 1 <p < oo, equation (3.1) has a (nonzero) LE-solution if
and only if either ¢; = 1 and

1
5 (lcolp + 11— eolr) < 1,

or ¢o = cz = 1. In the later case f = €X[0,2)--
Proof. We will use the IP-norm on R2. Note that

_|leco O _la oo _(Cta Co
_To—-[c2 Cl]’ Tl—-[o C2J’ andTo+T1—[ ca 61+C2]'

If (co,c2) = (0,0), then (To + T1) = 2I. Any nonzero vector v = [z, y]t will be
a 2-eigenvector. It is a direct calculation that v € H (¥) and, by Corollary 2.7, no
nonzero L2-solution exists. '

We assume that (co, c2) # (0, 0); the 2-eigenvector of (Tp + T1) is v = [co, c2]t, so
that ' : ‘

(3.2) b= (To—Iv= [2%{1:0_—;” .

For an Lg-solution to exist, H(%) can only be {0} or one-dimensional (Corollary 2.7 )-
In the first case, o = 0, condition (2.4) is automatically satisfied. The only
possible cases are :

(00762) = (1’1)’ (071), or (1’0)1

and the (normalized) solutions are given by f(z) = X[0,2)> X[1,2)> OT X[o,1), respectively. '

In the second case, ¥ # 0. Since H (9) is invariant under To and Ty, T49 = cb
for some ¢. Expression (3.2) yields the following cases (excluding those considered
above): :
(a) c; =0 for i = 0 or 2. In this case v € H (¥) and Corollary 2.7 implies that
(3.1) has no LE-solution. . ' " '

+ (b) ¢ =1 for i = 0 or 2. In this case a direct calculation shows that Tov, Tho
are independent. Hence H () is two-dimensional and by Corollary 2.7 no L2-solution
exists.

(¢) ¢; #0,1for i = 0and 2. By equating (3.2) and

(3.3) Toi = [ c3(co — 1) J

ca(c§ + €5 + cocz2 — 2c0 — 3¢z + 2)
with Tob = cb, we have ¢ = co, so that by (3.2) and (3.3),
(Cg + c% +coc2 — 2¢o — 3c2 + 2) = co(l — c2);

that is |
(co+c2—2)(co+cy — 1) =0.

Hence, either (i) or (ii) below holds.
(i) co +c2 = 2. In this case v = [co,2 — colt and ¥ = (¢p — 1)v. Once again
v € H(?) and no L?-solution exists. "




LP-SOLUTIONS FOR THE TWO-SCALE DILATION EQUATIONS 1033

(ii) co + c2 = 1. In this case a direct calculation shows that Tod = co®, T17 =
c2?. By Theorem 2.6, equation (3.1) has an L2-solution if and only if there exists an
integer [ > 1 such that

1 -
ot ([eol” + leafP)H{[B][P = Z I TyolP < Il’vH”
|J|—l

This is equivalent to
1
Eﬂcolp + |1 —colP) < 1.

The theorem follows by summarizing all the cases. O
It follows directly from the theorem that if cg + ¢ = 1 and if
(a) co € (—3,3), then an L¢-solution exists;

(b) co € (—ﬁ 1""/_) then an L2-solution exists;
(c) co € (0, 1), then an LE-solution exists for all 1 < p < oo.
The conditions are also necessary except for f = xjo,2). We remark that in [W} -
it is proved that if co + c2 = 1, then equation (3.1) has a continuous solution if and
only if ¢p € (0,1), which is stronger than (c). Other proofs of the L!-, L2-cases in (a)
and (b) are also known (see [P]).

We will now consider the 2-dilation equation with N = 3:

(3.4) £(z) = cof(23) + c1f(2z — 1) + c2f (22 — 2) + c3f (2z -3)

with the stronger assumption cg +cz = ¢; +c3 =1L The matrices Ty vand_Tl are given
by

Co 0 0 C1 Co 0
To=|c2 c1 co|{, Th=|c3 c2
0 ¢3 c 0 0 c3

It is easy to show that (To + T1) has 1, 2, and (1 — cp — ¢3) as eigenvalues, and the
2-eigenvector is
co(l + co — ¢3)
v=|(1+co—c3)(l—co+c3)
c3(1 — co + c3)
provided that (co, c3) # (0, —1) or (—1,0) (in these cases the 2-eigenvectors are given

by [1,0,0]t and [0, 0, 1]¢, respectively). It follows that (excluding the two exceptional
cases), ,

co(co — 1)(1 4+ ¢co — c3)
= (T() — I) = —C()(Co - 1)(1 “+cp — C3) — 63(1 - 63)(1 — Cp + C3)
03(1 —c3)(1 —co+c3)

Recall that the subspace H(?) is generated by T;(7), J € A. Under the assumption
co+ce =ci+c3 =1, Ty is invariant on

H = {[z,y,2)t :z+y+ 2z =0},

and H(?) € H. For convenience we will reduce the matrices Tp and T3 on H by
considering the first and the third coordinates of [:c., ¥,2]t in H. This defines two
matrices S;, 1 = 0,1, as in [CH1|. This can be seen by the following diagram:

g L, g

71 171,
‘Rz 2L, R2
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where S; = 7-!T;7 with 7 : R? — H denoting the natural isomorphism [z, 2] —
[z, —(z + 2),2]. The exphcxt expression of S;, i = 1,2, is given by

| co 0 _|l—co—ec3 =—co
SO_[—ca 1—-co—-c;3]’ Sl_[ 0 03]'

Slightly abusing the notation, we will still use ¥ and H (%) in R2 for the corresponding
terms in H. The new 9 in R2 is given by .

. Teolco— 1)(1 +co — c3)
(3.5) v= [c§(§°_ C3)El—cg+zc:2)]

for (co,c3) # (0,—1) or (~1, 0). The following theorem follows readily from Theorem
2.6.

THEOREM 3.2. For 1 < p < oo, equation (3.4) has a nonzero LE-solution if
and only if there exists an integer | such that

1 " | N '
(3.6) o Z l|Ssullp < 1 for allu € H(D) and ||u|| < 1.
1=t

For the degenerate case (i.e., H(9) = {0} or one-dimensional), condition (3.6) can
be displayed explicitly. This is shown in the following two lemmas.

LEMMA 3.3. H(9) = {0} if and only if (co,c3) € {(0,0),(1,0),(0,1),(1,1)}.

Proof. This is a consequence of (3.5), and a direct computation of the two special
cases (co,c3) = (0,—1) or (—1,0) (for such cases the corresponding H(d) are two~
dimensional). d ;

The solutions for these special cases can be handled easily as follows:

If (co, c3) = (0,0), then the solutions are f = cX[1,2]-

If (co, c3) = (1,0), then the solutions are f = cxpo,1].

If (co,c3) = (0, 1), then the solutions are f = cxjo, 3]-

- If (co,c3) = (1,1), then the solutions are f = cX(0,3]-

It is also simple to show that for the exceptional cases (g, c3) = (0, —1) or (—1,0),
condition (3.6) is not satisfied; therefore there is no LZ-solution.

LEMMA 3.4. H(D) is one-dimensional if and only if (co, c3) & {(0,0), (1,0),(0, 1),
(1,1)} and one of the following holds

co=0, ec3=0, orl—cy—c3=0.

Let 99 = Spv, U1 = S19. Then for the above three cases we have

= c[0, 1), and G0 = (1 — co — c3)d, B1 = cs;

=c[1,0]t, and ¥o = co¥, D1 = (1 — co — c3)7;

¥ = c[co, —c3]t, and To = co, U1 = ca?,

respectively.

Proof. The sufficiency is clear; we only prove the necessity. Assuming co, €3 # 0,
we want to show that (1 —¢g — ca) = (.

Suppose (1 — co — ¢3) # 0. Note that Sp has two eigenvalues ¢g and (1 —co—c3)
with corresponding eigenvectors [1—2co—cs, c3]t and [0, 1}¢, and S} has two eigenvalues
cs and (1 —co — c3) with corresponding eigenvectors [co, 1 — cg — 2c3]t and [1,0]t. The
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-one-dimensional assumption implies that Sp? = Ao®, S19 = A\19 for some constants

Ao, A1. Then it follows that
A0 = Cp, )\1 =c3,

5= 1—2cy—c3 — o Co
» c3 1—cg—2c3

and

for some constants ¢/, ¢””. Thus
(1 —2co — ¢3)(1 — co — 2¢3) = cocs,

and we have either (1—co —¢3) = 0 or (1—2cp —2c3) = 0. Since (1—co —c3) # 0, we
must have (1 ~ 2cp — 2¢3) = 0, so ¥ = ¢”[1, 1]t. By the formula of ¥ in (3.5), we have

C()(CQ —1)(1+co—e3) =cs(1 —c3)(1 — co + c3).

Simplifying this, we end up with 0 = 3/8, which is a contradiction. 0
THEOREM 3.5. Let 1 < p < co. Suppose that co + c2 = ¢1 + c3 = 1 and one of
co, ¢3, 0T 1 —co — c3 1s zero; then equation (3.4) has nonzero LE-solutions if and only
if '
3.7 ' leolP + |ealP + |1 — co — e3P < 2.
* Proof. Let || - || be the {P-norm on R2. In view of Lemmas 3.3 and 3.4, we can

assume that ¥ # 0 and H(¥) is one-dimensional. We first consider co = 0. The fact
that Sou = (1 — c3)u, S1u = czu for any u € H(?) yields

Z 1SsullP = 5 (ll — c3lP + |es|P)L.
iy

Now apply Theorem 3.2. We see that equation (3.4) has nonzero L®-solutions if and
only if |1 — ¢c3|P + |e3|P < 2.

Similarly, we can show that the corresponding conditions for ¢z = 0 and 1 — ¢g —
c3 = 0 are |co|P + |1 — ¢p}? < 2 and |co|P + |e3|P < 2, respectively. This completes the
proof. O

The following is an improvement of Theorem 3.2.

‘THEOREM 3.6. For 1 < p < oo, equation (3.4) has a nonzero L%-solution if and
only if either (co,c3) = (1,1) or there exists an integer | such that

1
(3.8) o Z |Ssullp <1 for allu € R2 and|lu|| < 1.
|Ji=l

Proof. By Theorem 3.2, we need only show that condition (3.8) holds when H (%)
is zero or one-dimensional.

The case when H(%) = {0} is obvious by Lemma 3.3, so we suppose that H(7) is
one-dimensional. Equation (3.7) implies that

S(ISoullp + 1S1ul) <1

for u = [0,1]* and [1,0]t, which is a basis of Ré; therefore the theorem follows by
Remark 2. O
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As a special case, we have the following corollary.
COROLLARY 3.7. Let 1 < p < 0o. Suppose co+ca =c1+c3 =1 and

(3.9) lcol? + |les|? + |1 — co — c3|? < 2;

then (3.4) has nonzero LE-solutions.

Proof. Let ||.|| be the IP-norm. As mentioned in Remark 2, we need only verify
condition (3.6) for a basis of R2. Therefore, condition (3.9) implies (3.8) for u = [1, 0]t
and [0,1]* with [ = 1. 0 , ,

Similarly, we can take { to be other integers and obtain sufficient conditions for
(3.4) to have nonzero L2-solutions. However, the expression is more complicated. For
example, for p = 1 the condition of (3.8) for | = 2 is equivalent to

cf + 3 + (1 —co — c3)? + [eo(1 ~ co)| + lea(1 — ea)] + |eo(1 — co — c3)|

(3:10) + |e3(1 — co — ¢3)} < 4.

In the appendix we will plot the different regions of (co, C3) that admit solutions.
They include the ones determined by (3.9) and (3.10), and some other known regions.

4. L2?-solutions. In this section we will show that condition (2.4) in Theorem
2.6 can be reduced to a more explicit form for the case when p = 2. We will use the
Euclidean norm on R¥. For any u € RNV, let Ay (u) := (1/2k) 2o 171=k 1 Tsul|?; then

1 1
Ar(w) = 5 > I Tyul)2 = o > wtTiTru
|J)=k |Ji=k
(4.1)

where M}, := ZI Ji=k T%T;, and My is the identity matrix. Since T = T(gr,0y Or T o 1)
for some J/, it is easy to see that Mj, satisfies the inductive identity

My = TngTo + TlthTl-
The matrix M} is actually determined by its first column; its explicit form is given as

follows. ‘
LEMMA 4.1. For any integer k > 0, M}, has the following form:

NCRENCIEIN S
M=lay= | 4 e
o o, . o
If we let k) = [a(()k),...,a%)_l]t, then a(k) = Walk-1) = Wke,, where e; =

[1,0...,0], and W is an N x N matriz with

oo
(W)= D citmCmaj, 0<i,j<N-—1,

m=—0o0
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where
e ifj=0,
Cik2) = {ct+2j +ci2; ifj#0.

Proof. =~ We prove the lemma by induction. Supposing M}, has the form as given,

let a(k) = q, (k). by using My41 = T My To + T{ My T1, the (4, 7) entry of M4, is given
by :
(Mk+1)z,_7 = Z Z C2m— z—lam_nc2n—_7 1+ Z Z C2m za _.nCZn—J
m=1n=1 m=1n=1
_ ~
= Z Z C2n42l—i—1C2n—j~ 1011 + Z Z C2n+-21— zCZn—Jal( )
n=1l=—(N-1) n=11=—(N-1)
(l=m-—n)

= Z Z 0m+2z—icm_jal(k) (m = 2n or m.= 2n — 1)
m=1]=—(N-1)
N-1 - 00

Z Z Cm.+2lcm—j+ia§k)

—(N~-1) m=-—o0
1

N-— 0o

k)
Cm421Cm—j+iQ) g

=0 m=—00

—~—

(We can extend the sum from —oo to +oo since ¢, vanishes for n ¢ {0,...N — 1}.)
By the symmetry of the range of | and m, we can rewrite the above equation as

N-1 oo

(Mig1)ig =Y > CmtaCm-itic]

=0 m=-—o0

Hence (Mk+1),~,j = (Mg+1)i+1,j41 = (Mg+1)j,i, and My, has the form as asserted. Also
from the proof above, we see that

N-1 [ols}
a§k+1) = (Mg+1)i0 = Z Z Cm:i:2lcm—ial(k)

=0 m=-—o00
Therefore we may write

(k+1) (k)

( ) 1) !
k41 k+1

=w N —ee |0
k41 k
aﬁv P afv) . 0

where W is an N x N matrix with (4, j) entry as

(W)= Z Ci+mCmx2j, 0<%, N -1 0

m=—0Q
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PROPOSITION 4.2. The matriz W can be written as the product A - B, where

A= [civjlocicn-1,, B = [cix2j] li|<N—1, -
' ilEN-1 " 0<Gj<N-1

For any vectors u = [up, ..., un-1]t, let U(u) be the vector

\Il(u) = [Z u?, 2 Z UiUi41y ey 2 Z«uiui+1v_1:| t ]

then Theorem 2.6 can be written as follows. 4
PROPOSITION 4.3. FEguation (2.1) has a nonzero L2-solution if and only if there
is a 2-eigenvector v of (To +T1) such that for any u € H(%),

1
.1 - |0
(4.2) lim —W)t-Wi-| .| =0.
{—00 2l ' :
0

Proof. For any u = [uo,...,un—-1]t € H(?), by (4.1) and Lemma 4.1, we have

1 1
Aiu) = 5 > T2 = 51 ¥ Miu

|J|=l
1 - .1 Uo ] N=1N-1 l
= g[uo, e un—1]M; : =5 Z u,-ujal(z:v)_ﬂ
UN—1 i=0 j=0
1 w1 0
= —P(u)t- X = =W(u)t-Wt. |.
ol o 91 :
AN_1 0
Now, apply Theorem 2.6 and the proof is complete. O :
We now assume ) czn = D C2nt1 = 1; then the vector [1,...,1]t is a right

eigenvector of W with eigenvalue 2. Indeed, for any 0 < ¢ < N — 1, the sum of the ith
row equals ’

N-1 N-1 N N-1 N
Z Wi ;= Z Z Ci+mCm+2j = Z Z CitmCm+2;
=0 j=0 m=—-N j=—(N-1)m=—N
N N-1 N
= Z Cit+m Z Cm+2; | = Z Citm = 2
m=—N j=—(N~-1) m=—N

Also, [1,...,1][Wtu = [2,...,2]u = 2 u; implies that W* is invariant on H.

Recall that the algebraic multiplicity of an eigenvalue )\ is the order of the factor
(A — Xo) in the characteristic polynomial. We can now state and prove our main
theorem of this section. :

THEOREM 4.4. Suppose Y com = D Com+1 = 1. If the eigenvalue 2 of W is of
algebraic multiplicity 1, and all other eigenvalues of W are less than 2 in absolute
value, then equation (2.1) has nonzero L2-solutions.
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Proof. For any u = [uo,...,un-1]t € H(®) C H,

Z Z UiUj = 'Zujr =0,

k |i—jl=k

so ¥(u) € H. It follows from the assumption that the eigenvalues of W on H are less
than 2 that we have for w € H,
.1
lligxo éth Wit =0.
Theorem 4.4 now follows from Proposition 4.3 directly. - O

. Remark 7. We can write the matrix W as follows: Let P = [pq,...,pn—1] be an
orthonormal matrix with po = [, ..., 5]t it follows that

* ‘ —_— 2 *
P*wpP = [ 0 W1] ,

where the (N — 1) x (N — 1) matrix W; is the restriction of W on H. Theorem 4.4
tells us that equation (2.1) has a nonzero L2-solution if W1 has spectral radius less
than 2. - ‘
For the converse of the above theorem we need the following lemma.

LEMMA 4.5.  The image of H under the map ¥ contains an (N —1)-dimensional
region of H. '

Proof. This follows from the observation that the vectors

2,-2,0,...,0], [2,0,-2,0,...,0}, ..., [2,0,...,0,—2]t
are the images of _

[1,-1,0,..., 0}, [1,0,-1,0,...,0}, ..., [1,0,...,0,~1]¢
under the continuous map V. O

PROPOSITION 4.6.  Suppose > con = > cont1 = 1 and (2.1) has a nonzero
LZ%-solution f. Let v = [fio.1]---» fro,N—1)]t De the average vector of f; if H(D) =
and {Wke  }N . spans RN, then the eigenvalue 2 of W has algebraic multiplicity 1
and all other eigenvalues are less than 2 in absolute value.

Proof. If {Wke;} spans RV, then (4.2) is equivalent to

Jim_ %T\Il(u)t Wt =0
for any w € H(v). But if H(%) = H, then by Lemma 4.5, U(H) is also a (N — 1)-
dimensional region contained in H. So the spectral radius of W; must be less than 2
and the proposition follows. O
Remark 8. If we impose the m-sum rules (2.7), then for any u € Hy,, we also
have ¥(u) € Hy,. This is true because for any j = 0,1,...,m,

1Y
14

N-1
U(u)t - : = Z ki (z Uitk + Zuiui_k)
R N 1) k=0 i i

- Y (z m,+k) Y (2 - )

k=0 k=0
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which is 0 since it can be shown inductively that ZkN;bl kiuigr=0for j=0,1,...,m
and any i. By Theorem 2.12, Proposition 4.3 reduces to the following corollary.

COROLLARY 4.7.  Suppose that > ¢, = 2 and the m-sum rules hold, and sup-
pose there is a 2-eigenvector v of (To + T1) such that for any u € Hp,,

1

1 0
l}gnoogut wt. : =0.

0

Then equatzon (2.1) has a nonzero L2-solution.

Remark 9. In [E] [Herl], [Her2], and [V] there are various characterizations of
the existence of L2-solutions; the Sobolev exponents and energy moments are also
obtained. In those papers the Fourier method was used, the dilation equation (2.1)

becomes
fo=m($)7(5).

where mo(§) = 3 Y cke~E. Let g(€) = Y 0o o |7(€ + 2k)|2; then

() (§) (5 o(5+3):

Villemoes [V] showed that a nonzero L2-solution exists if and only if there is a non-
negative trigonometric polynomial g E) Zk__( N—1) ke~ ¢ satisfying g(0) > 0 and
(4.3).

For g(&) = Zk_____ (N—1) ke~ ¢, it follows from a direct calculation that equation

(4.3) is equivalent to the fact that [a_(ny_1),...,an-1] is a left 2-eigenvector of W',
where W’ is a (2N — 1) x (2N — 1) matrix with (Z, j) entry equal to '

(4.3) g(é) =

oo
D cCitmemizj, —(N-1)<ij<N-1L

— 00

By the symmetry of W’ and the fact that the cx’s are real, one can reduce the operator
W' to the matrix W we consider here (see Remark 3.2 in [V]).

Lawton [La] showed that the scaling function f generates an orthonormal basis
of L? if and only if the vector [a_ (N=1)s+ -+ AN~ 1] with ax = 6ok is the only left
eigenvector of W' corresponding to elgenvalue 2.

Hervé [Herl] and [Her2] used an iteration argument based on (4.3) (with 2 re-
placed by p) to determine the condition for the existence of the solution whose Fourier

transform f is in LP. He also calculated the Sobolev exponents

89 = sup { 0. [IFOPQ+igr)ae < oo}

for such f.
To conclude this section we will demonstrate the foregoing results for the case

N = 3. By Lemma 4.1, we calculate that

2(1 — ) 26 0
W= 1|1-—coc3 1 cocs |,
6 2(1 —-6) &
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where § = cp — ¢ + c3 — 2. In addition to 2, W has two eigenvalues

) .
5 (1—-c0+cg—c;;+c§:l:\/1+260003—(co+03_)w1+(cg+c§)w2 ) ,

where
= (18c3 + 18¢c2 — 16¢coc3 + 6), wa = (9c& + 9c2 + 16¢cocs + 15).

It follows from Theorem 4.4 that if the two eigenvalues are less then 2, then L2-
solutions exist.

For N = 3, if we adopt the approach in §3 by reducing the matrices T; on H to
S; on R2, 1= 0,1, then the above ana1y51s is more transparent and the result can be
sharpened.

Let My be the 2 x 2 identity matrix. Assume

’ ~ : ak) gk
My = lzlj 545y = [ﬂ(k) g(k)} .
J|=k

A direct computation shows that

Mgy =Y S4S; = S;MySo + St M5y

|J|=k+1
[ (E+cE+d2)atk) —2coc3f®)  —(cod + cad)al®) + (cod + cad)BK)
| =(cod + cad)al®) + (cod + c3d) 3R (G + ¢ + d?)al® — 2coc35F) ,

where d = (1 — co — c3). Comparing the first columns of the two matrices M, and
'Mk+1, we can define the matrix W as follows:

a(k+1) - a(k) - 1
[wn] =[] = [o]

W [cg+c§+d2 —2¢oc3 ]
—d(co +c3) d(co+ c3)
A direct computation shows that W has the same eigenvalues as W7 in Remark
7; however, we do not known their exact relationship.
THEOREM 4.8.  Suppose cg + c2 = ¢1 + ¢3 = 1; then the dilation equation (2.1)
with N = 3 has nonzero L2-solutions if and only if either (co, c3) = (1,1) or the matriz

d+ci+d2  —2ccs
—d(co +c3) d(co+ c3)

where d = (1 — co — ¢3), has spectral radius less than 2.
Proof.  For any u = [z,y]t , we have

L
Z Ssull2 = = Z utSySju = EUt Z SLSs | u

IJI——l IJl=l [J1=1

1 o) Bv
= authu 5 [-’E J [ﬁ(l) a(z)] [ ]

= E[mz + 12, 22y [ﬁ(l)]

1 -
N ) 2
= 21[:1: + y2, 2zy| W [0]

where
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Since {[z2 + ¢2,2zy]; [z,y] € R2?} spans R2, the condition

1
o Z [ISsuf]2 — 0 as | — o0 forall ueR2
=

is equivalent to

1

(4.4) —21—IWI [ 0

]—»O as [ — 00.

We will show that (4.4) holds if and only if the spectral radius of W is less than
2; hence Theorem 3.6 applies and we are done.

If d(co + c3) # 0, let uy = W(1,0]¢; then w1 and [1,0] are linearly independent.
(4.4) is equivalent to the statement that ZWlu — 0 for all w € R2, and hence
—21[15” — 0 as | — oco. This means that the eigenvalues of W are less than 2.

If d(co + c3) = 0, then W is of the form

w1' wo
0 O
for some w; and ws. It follows that

1 1~1
W [0 , ]

and (4.4) implies [(1/2!)w!] < 1, that is, |w1] < 2. Again the eigenvalues of W are all -
less than 2 in absolute value. O '

Appendix. For the four-coefficient dilation equation
(A1) f(@) = cof(2z) + c1 f (22 ~ 1)+ c2f (22 — 2) + 3 f(22 — 3)

with co+c2 =1, ¢ + ¢35 = 1, let cg, c3 be the independent parameters. We use the
Mathematica on a NeXT workstation to plot the following regions of (co,c3), for
which the compactly supported L! and L? solutions exist.

Let D, be the regions of (cg, c3) for which

1
(A2) 5 D lISsull<1 for uweR2 |uj<1
=

holds. By Theorem 3.6, except for (co,c3) = (1,1), equation (A1) has a nonzero
compactly supported L!-solution if and only if (co,c3) is in the union of the regions
Dy, 1 =1,2,.... In Fig. 1 we display the regions D, for [ = 1,2,4, and 8. Here the
norm is |||z, yJ*|| = |z| + [y.

Note that the regions are increasing (Remark 5, Theorem 2.6). When ! =1 and
2, condition (A2) can be written as

leo| + |es| + |1 — co — e3] < 2,
and

B+ 3+ (1 - co—c3)2 + Jeo(l — co)| + fes(1 — c3)| + lco(1 — co — e3)|
+ |e3(1 — o — c3)| < 4,
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1.5
1
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1 1.5 2
Fic. 1. ’
2
1.5
1
0.5
0
-0.5
-1
-1 ~-0.5 0 0.5 . 1 1.5 2
Fic. 2.

respectively. For | > 3, the expression is more tedious.

In Fig. 2 we plot the regions D, for [ = 6 and 8. Note that they are very close,
and hence they are good approx1mat10ns of the admissible region of (¢, c3) for L1-
solutions.

~ In Fig. 3 we plot the following regions of (co,cs) for the existence of the L1-
solutions from some previous results.
The region outside the ellipse

c2+c2—co—ca+eoc3=1

is known to have no Li-solution for (Al).
The region bounded by the dotted line

c2 + c2 + lco(1 — co)| + Jea(1 —e3)] + 2|1 —ep — e3| < 4

is a sufficient condition given by Pan [P].
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1
0.5
0
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-1
-1 -0.5 0 0.5 1 1.5 2
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2
1.5
1
0.5
o
-0.5
-1
-1 -0.5 0 0.5 - 1 1.5 - 2
| Fi1G. 4.

The region Dsg is determined by (A2) with [ = 8.

Also, the triangular-shaped region approximates the domain where the _)omt
spectral radius of Ty and T3 is less than 1, hence nonzero compactly supported con-
tinuous solutions exist there.

In Fig. 4, we plot the following regions:

First we plot the region determined by the ellipse as in Fig. 3.

Next we plot the region bounded by the thicker line consisting of points (co,c3)
for which the matrix '

[c% +cE+d2  —2cocs

—d(co + c3) d(CQ+C3):| , where d= 1‘—00—63,

has spectral radius less than 2. This is a necessary and sufficient condition for (A1) to
have nonzero compactly supported L2-solutions with one exception: (co,c3) = (1 1)
(Theorem 4.8). .
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We also plot the region for the existence of compactly supported continuous
solutions as in Fig. 3.
Finally, we plot the circular region

(co—1/2)2 4 (e3 —1/2)2 < 1/2,

a sufficient condition of the existence of L2-solutions given in [La. The boundary
is called the circle of orthogonality: if the wavelet generated by the scaling function
satisfying (A1) is orthonormal, then the point (co,c3) must be on the circle.
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